Determination of an Unknown Source in the Heat Equation by the Method of Tikhonov Regularization in Hilbert Scales
نویسندگان
چکیده
In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and the a priori bound of exact solution are not needed for the choice rule. Numerical tests show that the proposed method is effective and stable.
منابع مشابه
Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملThe Tikhonov Regularization Method in Hilbert Scales for Determining the Unknown Source for the Modified Helmholtz Equation
In this paper, we consider an unknown source problem for the modified Helmholtz equation. The Tikhonov regularization method in Hilbert scales is extended to deal with ill-posedness of the problem. An a priori strategy and an a posteriori choice rule have been present to obtain the regularization parameter and corresponding error estimates have been obtained. The smoothness parameter and the a ...
متن کاملSolving an Inverse Heat Conduction Problem by Spline Method
In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملConvergence rates for Tikhonov regularization based on range inclusions
This paper provides some new a priori choice strategy for regularization parameters in order to obtain convergence rates in Tikhonov regularization for solving ill-posed problems Af0 = g0, f0 ∈ X, g0 ∈ Y , with a linear operator A mapping in Hilbert spaces X and Y. Our choice requires only that the range of the adjoint operator A∗ includes a member of some variable Hilbert scale and is, in prin...
متن کامل